Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Inform Med Unlocked ; 29: 100870, 2022.
Article in English | MEDLINE | ID: covidwho-1665016

ABSTRACT

The global expansion of COVID-19 and the mutations of severe acute respiratory syndrome coronavirus necessitate quick development of treatment and vaccination. Because the androgen-responsive serine protease TMPRSS2 is involved in cleaving the SARS-CoV-2 spike protein allowing the virus to enter the cell, therefore, direct TMPRSS2 inhibition will inhibit virus activation and disease progression which make it an important target for drug discovery. In this study, a homology model of TMPRSS2 protein was initially developed. Then, we used the fragment-based drug design (FBDD) technique to develop effective TMPRSS2 inhibitors. Over a half-million fragments from the enamine database were screened for their binding ability to target protein, and then best-scoring fragments were linked to building new molecules with a good binding affinity. XP docking and MM-GBSA studies revealed 10 new formed molecules with docking score ≤ -14.982 kcal/mol compared to ambroxol (control) with a docking score of -6.464 kcal/mol. Finally, molecular dynamics (MD) and density functional theory (DFT) were calculated for the top 3 molecules.

2.
Inform Med Unlocked ; 26: 100725, 2021.
Article in English | MEDLINE | ID: covidwho-1404761

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emergence has resulted in a global health crisis. As a consequence, discovering an effective therapy that saves lives and slows the spread of the pandemic is a global concern currently. In silico drug repurposing is highly regarded as a precise computational method for obtaining fast and reliable results. Transmembrane serine-type 2 (TMPRSS2) is a SARS CoV-2 enzyme that is essential for viral fusion with the host cell. Inhibition of TMPRSS2 may block or lessen the severity of SARS-CoV-2 infection. In this study, we aimed to perform an in silico drug repurposing to identify drugs that can effectively inhibit SARS-CoV-2 TMPRSS2. As there is no 3D structure of TMPRSS2 available, homology modeling was performed to build the 3D structure of human TMPRSS2. 3848 world-approved drugs were screened against the target. Based on docking scores and visual outcomes, the best-fit drugs were chosen. Molecular dynamics (MD) and density functional theory (DFT) studies were also conducted. Five potential drugs (Amikacin, isepamicin, butikacin, lividomycin, paromomycin) exhibited promising binding affinities. In conclusion, these findings empower purposing these agents.

SELECTION OF CITATIONS
SEARCH DETAIL